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ABSTRACT

To delineate the astronomical number of possible
interactions of all genes in a genome is a task for which
conventional experimental techniques are ill-suited.
Sorely needed are rapid and inexpensive methods that
identify candidates for interacting genes, candidates
that can be further investigated by experiment. Such a
method is introduced here for an important class of
gene interactions, i.e., transcriptional regulation via
transcription factors (TFs) that bind to specific en-
hancer or silencer sites. The method addresses the
question: which of the genes in a genome are likely to
be regulated by one or more TFs with known DNA
binding specificity? It takes advantage of the fact that
many TFs show cooperativity in transcriptional activa-
tion which manifests itself in closely spaced TF
binding sites. Such ‘clusters’ of binding sites are very
unlikely to occur by chance alone, as opposed to
individual sites, which are often abundant in the
genome. Here, statistical information about binding
site clusters in the genome, is complemented by
information about (i) known biochemical functions of
the TF, (ii) the structure of its binding site, and (iii)
function of the genes near the cluster, to identify genes
likely to be regulated by a given transcription factor.
Several applications are illustrated with the genome of

Saccharomyces cerevisiae , and four different DNA

binding activities, SBF, MBF, a sub-class of bHLH
proteins and NBF. The techniqgue may aid in the
discovery of interactions between genes of known
function, and the assignment of biological functions to
putative open reading frames.

INTRODUCTION

approaches that permit the formulation of experimentally testable
hypotheses about gene interactions from sequence data alone.
The advantage of such approaches are clear. They could vastly
improve efficacy of experiments by pointing out likely candidates
for interacting genes.

In devising such tools, the fundamental question is: what types
of gene interactions leave traces on the DNA, traces that could
lead to the identification of interacting gene products. Maybe the
prime candidate for such interactions is the transcriptional
regulation of protein coding genes in eukaryotes. Here, transcrip-
tion factors (TFs) bind enhancer sequences near the coding region
of a gene, recruit a basal transcription machinery to the
transcription initiation site, and activate the transcription of the
gene (). Alternatively, TFs can repress transcription of a gene by
interfering with the basal transcription apparatus in various ways
(2). The common theme is that the binding of TFs to specific,
often short sequences on the DNA is hecessary for transcriptional
regulation. Undoubtedly the predominant mechanism regulating
gene expression in eukaryotes, transcriptional regulation ac-
counts for an enormous number of gene interactions. The
availability of an efficient tool for the analysis of genes that are
regulated by a given TF would thus permit analysis of a
significant part of the global network of gene interactions. It
would put cell biology a large step closer to its ultimate goal.

Naively, one might assume that it is sufficient to look for
binding sites of specific TFs near a gene to identify candidate
genes for regulation by the TF. This approach is standard practice
on a small scale, and its extension to entire genomes is
straightforward §). However, for many known enhancer sites, it
is also deeply problematic. For example, the minimally functional
binding site of the heat shock transcription factgB)(occurs
more than 18times in the genome &accharomyces cerevisiae
(unpublished observation). The promoters of most genes would
contain one or more such binding sites, making any biological
conclusions based on binding site occurrence meaningless. Is

The ultimate challenge to molecular biology is to identify andhere a modification of this approach that would render it useful?
fully characterize the complete network of interactions amonlj has long been recognized that most transcriptional regulators
genes and their products in an organism. In facing this challenglisplay (homotypic or heterotypic) cooperative interactions,
the wealth of information created by genome sequencing efforéither when binding DNA, or when activating transcription.
will be an invaluable resource. However, our ability to extrac€ooperativity is usually reflected in the occurrence of multiple

biologically important information about gene interactions fronclosely spaced binding sites on the DN&). (The approach

genome sequences is still quite limited. Most of the biologicahtroduced below takes advantage of the ubiquity of cooperative
interpretation of genome sequences pertains to the number antéractions to identify genes putatively regulated by given TFs.
types of genes in an organism. Sorely needed are nowud basic tenetis that groups (‘clusters’) of TF binding sites linked
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much more tightly than expected by chance alone, are probalslgpend on methods to estimate the probability of binding site
relevant to the transcriptional regulation of a nearby gene. Theecurrence on the DNA. These methods are therefore discussed
central problem is to find a statistically sensible definition of dirst. Then, the three steps are explained in greater detail.
highly significant cluster of binding sites. It will be seen below
that common plausibility arguments about the significance dgfstimates of the probability of site occurrence
binding site clusters can be quite misleading, if one takes the ) - _ _ _
genome-wide distribution of binding sites into account. In onlyVhat is the probability that a random oligonucleotide with
accepting the statistically most significant groups of binding site§0mpositional features similar to those of genomic DNA, and
it is attempted to minimize the method’s false positive rate. [With the same length as the binding site of interest, matches that
addition, various sources of biological information are incorposite? To ensure wide applicability of the technique, conventional
rated into the analysis, information that is likely to decrease thPnsensus sequences are used here instead of position weigh
rate further. However, the price paid for such conservativism i®atrices (PWMs:12,13) for binding sites, because very few
that many genes regulated by a TF may not be detected. It i§f@nscription factors are sufficiently Well characterized to.allow
price well worth paying, given that a conservative approach wiffonstruction ofa PWM. When addressing the above question, one
generate candidate genes that seriously merit further expefi@s to take into account that functional transcription factor
mental investigation. binding sites (i) may occur in either orientation on the DNA, (ii)
A well known general problem in the analysis of DNAMay have relaxed sequence requirements at some positions, as
sequences is the enormous heterogeneity of sequence comptsflected by standard IUB nucleotide code§ ((iii) in addition
tion, which violates assumptions needed for most conventiont such ‘ambiguous’ positions, may show a substantial number of
statistical techniques78). Any statistical approach to the Mismatches to their consensus binding site.
analysis of DNA sequences will thus provide only a crude The relative frequency of a binding sief lengthl (anl-word)
assessment of sequence properties. The method used here cafindt DNA sequence o nucleotides is denoted ljys, and
altogether avoid the problems of sequence heterogeneity, Klftermined by dividing the number of word occurreriégsn
attempts to alleviate them by taking both global (genome-widdiiat sequence by the maximally possible nurhbet + 1, i.e.,
and local sequence properties into account. N
While the technique is applicable to any eukaryote, it is here ps = Wj—l
illustrated with the genome 8fcerevisiaeThe main reasons are
that potential yeast promoter regions are in general short afgbecial cases are the mono- and dinucleotide frequemngies,
located upstream of the coding regié(), and that the yeast Pc, PT. PaA, - - . ,PrT. The relative frequencies of a word with
genome does not contain many tandemly repeated sequenesgctlyk or at mosk mismatches to a given wogbf the same
other than rDNA and CUP1 genesi); Four different applica- length are denoted apy, and p.., respectively, where
tions are illustrated with different yeast DNA binding proteins.ps = pg,. Obviously,
They include, but are not limited to the identification of novel
interactions among genes of known function, and the putative $
assignment of biological function (cell cycle regulation, etc.) to Ps=k Z Py -
ORFs with unknown function. The particular choice of four =0
DNA-binding proteins (out of thE75 characterized to date) was The corresponding statistical predictors of the probabilities of
motivated by (i) their well characterized DNA binding sites, (i)word occurrence will be denoted fg Py and By
the length of their binding sites (for methodological reasons
discussed below), and (iii) the variety of applications that they c&global predictor based on site counksere, the predictof)SSk
illustrate. Needless to say, all candidate gene interactions site occurrence probability is the relative frequepgy,, as
identified by the method have to be tested experimentallgetermined by equatiorisand2, for an admissible number of
However, while tentative, the results may aid in sifting througlismatchesk. Under the Poisson model of site distribution,

the astronomical number of possible gene interactions, aRghere the probability of observirgsites in a DNA sequence of
identify candidates worthy of experimental investigation. lengthN is given by

1

2

;{k
STATISTICAL METHODS Prob(k) = expt) iy - 3

This section illustrates the statistical techniques used to identif§ = ps (given by equation) is a maximum likelihood estimator
highly significant clusters of transcription factor binding sitesof the distribution parametar One has to count a large number
which are then further analyzed using biological informatiorof sites to ensure a narrow confidence interval for Xh{$5).
about the respective transcription factors. The general approa@iven that many transcription factor binding sites are longer than
has three steps. First, significant clusters of particular bindint0 bases1), very large amounts of sequence may have to be
sites are detected by what is referred to as a ‘genome walknhalyzed to ensure a narrow confidence interval. To maximize
analysis. Second, some of the clusters thus identified agge count, P, was not determined for each yeast chromosome
eliminated from further consideration because of their location i§eparately, but for all 16 chromosomes together.

the genome. Third, the statistical significance of the remainin . ] .
clusters is reassessed on the basis of local sequence composil?’dﬂd'cnpn based on mononucleotide frequendies.an oligo-
By taking both global and local sequence properties into accoufticleotide generated by independently and randomly selecting
it is attempted to alleviate problems caused by compositiongHccessive letters from an underlying alphabet, the predicted
heterogeneity of DNA. Both the first and the third step criticallyprobability ps is simply the product of the letter frequencigs,
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.,PT. Pg=«is calculated via equatidh To calculate individual the beginning (end of the top strand) of the DNA sequence. The

pg's, one sums the respective probabilities ovei-alpels of quantity
positions wheremismatches can occur. For example, to calculate Dij =X —X%

P for the 8-word 5CACWANAA-3', one has to sum over denotes the distance between XjtandX.

(8 ; ! = 21 configurations of sites at which two mismatches k=2
. - . . Dijtre1 = Diyiivivr k>1 4
can occur. To predict the probability of finding a word with Hrkot JZ; AU
mismatches at positions, say, 1 and 4, one calculates . . .
(1 —po)papc(l —pw)Pa Pa Pa, Wherepw = pa + pr. is the length of a stretch of DNA spanning exactiords. It will
be referred to as lacluster. Under the Poisson null-hypothesis

Prediction based on dinucleotide frequendigshis case a DNA - gqyation3, the distribution of the distance between successive
sequence is viewed as a sequence of letters generated dgqfys Di i+1, is exponential with density

first-order Markov chain 1(7). The probability of finding a

particular wordS, say 5-CACTAA-3’ is then predicted as Ae Mz 5
Be = PcaPacPctPraPaa This is the probability distribution of the length of 2-clusters.
s PAPcPPA - More generally, the length kfclusters follows a Pearson type Il
For wordsS containing positions with relaxed sequence requiredistribution with density
ments Y/ N etc.), anck permissible mismatches to the consensus, 1
all words were explicitly generated that fulfil the sequence (1) (A2*%e* k> 1, 6

requirements, and contain only lettargroughT. Their respective
probabilities were calculated using the above formula with observadherel (k) = (k — 1)! is the gamma function. This is easily seen

mono- and dinucleotide frequencies, and added to opfaip from the characteristic functions of equatiGnasnd6 (18). The
So far, for all three predictors, only the probability of encounteringrobability of observing &-cluster of length less tharis

the wordS and not that of its equally functional reverse complement X

S was given. For palindromic words, wh&e S and fork = 0 1 o

allowed mismatches, the predicted probability of encountering the ~ Prob(Di .1 < X) = k=1 (12" e "dz. 7

word or its reverse complement is simpf, itself, because 0

whenevesoccurs, Svill occur as well. For non-palindromic words
and fork > 0, the situation is more complicated because there
be non-palindromic words, e.g/;6AWTTC-3, that admit some
palindromic matches,' ®AATTC-3', and some non-palindromic
matches, SGATTTC-3. In such cases, the quantjly + pg will
over-estimate word probability by as much as a factor of two, Prob(D; j+k-1 <X) <P. 8
because it counts the palindromic word occurrences twice. Howevef, appropriate choice Bfis discussed below.
because the binding sites to be analyzed below are either perfeg,o harameted needed in the above statistical tests was
palindromes, or contain features that prohibit palindromic match@Sstimated here via relative site frequencies in the genome.
:;uch as strong asymmetries, overestimation of site probability is '?96wever, from each pair of overlapping sites only one site was
likely to be a problem here. o . (randomly) chosen, and included in the absolute site ¢yt

The next three sections list the principal steps of the statistic | This was done because in general only one of two overlapping
analysis carried out here. sites can be functional, i.e., occupied by a TF at any given time.
In terms of the statistical analysis, it leads to more conservative
significance tests, because very short and thus highly significant
2-clusters are eliminated. Starting X4, the lengths of all
The most simple, albeit problematic, null-hypothesis of bindinds-clusters up t= 11, i.e.Dg 1, Do 2, . . . ,Do,10 Was determined.
site distribution is the Poisson approximation (equajott can  If for any of these k-clusters equati®mvas true, the cluster was
be violated for two reasons, the first of which is the structure aftained for further analysis. This procedure was repeated for
the sites themselves. Very short sites, long sites in which a largleisters starting &1 (D12, D13, . . . ,D1,17), Xp, throughX,_10,
number of mismatches is allowed, or sites with a repetitiveence the name ‘genome walk’ analysis.
structure (e.g.,'5S6GGGG-3) will not follow a Poisson distribu- ~ For all binding sites analyzed here, except those for the
tion even in random DNA with independently distributedtranscription factor MBF, a significance level Bf= 0.001 was
nucleotides. However, this is not a problem for the sites studiethosen, because of the large number of site counts, and thus the larg
here (see next section). The second reason for deviations from thunber of significance tests to be carried out. For example, for a TF
Poisson approximation is compositional heterogeneity and theéth a genomic site count dfs + Ng = 5000, there aréb00
complex statistical structure of DNA. It is addressed in step Bon-overlapping 10-clusters, and thus 500 independent significance
below. In step 1, however, statistically significant clusters ofests for 10-clusters. A value ®f= 0.05 orP = 0.01 would lead to
transcription factor binding sites are identified by testing sita high type | error probability. The particular choice Pofis
spacing against the null-hypothesis of a Poisson distribution. motivated by the counts observed for the binding sites studied here

Denote a¥y, . . . X, the positions at which a sBer its reverse  (103-10* per genome), such tHiis of the order of the number of
Scomplement are encountered on the DNA. Further, defiXg as independent tests carried out for a given clusteksize

' To assess whether the lengtof an observek-clusterD; 41,

M3 shorter than would be expected ‘by chance alone’ under the
null-hypothesis, and for a given significance leRebquations

is used to determine whether

Step 1. Identification of binding site clusters by genome
walk analysis
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Table 1.Binding site counts and tests for Poisson distributidB.aerevisiagenome and in random DNA

Site Yeast genome Random DNA
Mismatches allowed No of sites X2 (df) G (df) X2 (df) G (df)
SBF 5-CACGAAAA-3' 1 15331 26.40 (103 25.37 (103 3.78 (10) 4.32 (10)
MBF 5-ACGCGT-3 0 692 2.61 (6) 2.57 (6) 7.94 (7) 8.48 (7)
bHLH 5-CACGTG-3 0 953 7.28 (6) 7.29 (6) 3.01 (7) 3.21 (7)
NBF 5-ATGTGAAAT-3’ 1 5509 16.34 (9) 16.52 (9) 12.43 (9) 13.17 (9)

aSignificant at 0.005 € < 0.001

Step 2. Elimination of some statistically significant clusters SITE

Yeast transcriptional regulators function in general only when a) SBF b) MBF ¢ bHLH d) NBF
bound upstream of the coding regidh1(Q), with the possible

exceptions of the transcription of Ty retrotransposar®). ( k=123 123 123 123

Moreover, regulatory regions that lie interspersed among various
genes and in enormous distances from the gene they regulate seem
to be absent or infrequent Bicerevisiag9). Thus, statistically
significant clusters were not considered further, if they (i)
overlapped or were located inside exons, and (i) if they occurred
downstream of both adjacent open reading frames (ORFs).

e e e e e
W
NoN-LIEN No W& RN SNRFS RS

Step 3. Analysis of remaining clusters based on local
sequence composition

. . . . . . Figure 1. Tests for a clumped distribution of TF binding sites. Shown are the
EstimatingA via actual site counts in step 1 is necessary becausesults of am-scan analysis for clumped site distribution. rstan is defined

global sequence composition is a poor predictor of site occurren@e the length of DNA betweert1 consecutive binding sites. The test asks

(20). However, local biases in sequence composition may affe hether théth smallest-scan observed in the genome is significantly smaller

the local probabiliies of site occurrence, and thus the actug}an- expected by chance alone under the null-hypothesis of exponentially
A p v € istributed binding site distances. A ‘+' in the table indicates that the respective

significance of the detected clusters. Thus, in the last step of th@iue is significantly® = 0.01) smaller than expected. The rather conservative

analysis, DNA mono- and dinucleotide composition was analyzesdignificance level is chosen because of the large number of tests carried out. The

in each of the remaining C|usterS, or in a 500 bp window Centereﬁgure shows that the binding sites for MBF, SBF, and the bHLH core motif

around the cluster, whichever was longer. Precisely those mong-CACCTC-3 show a clumped distribution, whereas those of NBF do not.

and dinucleotides that occur in the binding sites will be overly

frequent in small clusters. This is why a DNA segment larger thaased on global site counts. Williams’ correction was applied to

the actual cluster was used forlsmall clluster.s. Two new estimateg likelihood ratio testd, p704).

of A, based on mono- and dinucleotide distributions in these

regions were _used to reassess the significance (eqBptibthe 'RESULTS AND DISCUSSION

clusters remaining after step 2. In statistical terms, the underlying o ) ]

null hypothesis is that site distribution in the genome follows afeveral applications of the method introduced above are illus-

inhomogeneous Poisson process, i.e., a Poisson process wHiggd with different yeast transcriptional regulators. The first

parametep\ = )\(y) is a function of the |ocati0y| in the genome example concerns two transcrlptlonal re_gulators, SBF and MBF

(212). Higher order correlations among nucleotides were not takdRPSC1), known to regulate the expression of a large number of

into account for reasons of computational feasibility. genes that are expressed in the late G1 phase of the celbéycle (-
Both factors are heterodimers that share a common subunit.
R-scan analysis However, their consensus DNA binding sequences differ (see

Table 1), and they appear to regulate non-overlapping sets of
This statistical technique2(,22,23) can be used to assess on agenes 76-28). SBF regulates the transcription of the HO
global level whether words show a clumped distribution in genomigndonuclease, the cyclins CLN1 and CLN2, and the putative
DNA. It uses only the extreme values of the distributioD; @f (@  cyclin HCS26 29). MBF regulates a large number of DNA
k-scan in Karlin's terminology). Denote asknthe Ith smallest  synthesis genes, the cyclins CLB5 and CLB6, the kinase SPK1,
k+1-clusterD; j+. R-scan analysis asks whethek im smaller than  and the transcription factor SWI12528,30).
expected by chance alone under the Poisson null-hypothesis. The

relevant formalism can be found in equation 5 of2@f. Global analysis of genomic site distribution

Sites that would not follow a Poisson distribution in random DNA
cannot be analyzed with this method, as discussed above. It was
Likelihood ratio and(? goodness of fit tests were carried out aghus tested whether distances between SBF (MBF) binding sites
described in ref24 (Ch. 17) to establish whether the lengths offollow an exponential distribution in a long (14 Mb) random DNA
D; j+1 followed an exponential distribution. Estimates\afere  sequence with the same nucleotide composition as yeast. The

Goodness of fit tests for exponential distribution
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SBF Binding Site: ¢

* * * «& * *

a) 3D significance profile

YALO61W 35kb

24kb YALO63C

65bp . 56 bp , e,

L I | L

; P ... Cluster Significance
CEN . P=.0008
Position P=.01
P=.08

P=.004

P=.07
b) Projection on x-z axis P=02

0.0001

0.001 t l Figure 3. A significant cluster of SBF-binding sites on chromosome | between
GDH3 and YALO63C. The displayed region corresponds to an 11 kb fragment
starting at 24 kb counted from the left telomere of chromosome |I. It includes
the highly significant 4-cluster of SBF binding sites labelled in Figure 2 as
YALO63C/GDH3. A detail of the cluster is shown in the lower part of the figure.
It comprises four SBF binding sites spanning a total length of 144 bp to the last
position of the fourth site. Also shown is tRevalue of this 4-cluster, as well
as theP-values of all sub-groups of binding sites, as indicated by the arrows.

1 L l Notice that, despite their tight linkage, none of these sub-groups is significant
i CEN1 X X 230k atP < 0.001. Because the neighboring ORFs are encoded on opposite strands,
E"P‘,‘ﬁ%ﬁc » and transcribed in opposite directions, SBF is a candidate for transcriptional

Position regulation of both genes.

Probability

[E—

Figure 2. Significance profile of SBF binding site clusters on chromosome I. if a very large number of very closely spaced site-pairs occurred.
(?1) The statistical h&gmﬂqan(;e of | all groups odeBF blndlngf Zl_teds_ on A more sensitive test is providedisgcan analysi(,22,23). An
chromosome |. Each point in tke-y plane corresponds to a group of binding : : o :

sites comprising the number of sites indicated orythes (2-11), whose'5 I’b.S(c:jf.:m IS the leqmmatlve Ier}gth OffDNAI betw d dg co_lr)]sgcutlve k
most site starts at the position indicated onxtiaais. The origin (lower left inding sites.R-scan analysis for clumped distribution asks
corner) corresponds to the first group of two binding sites starting at the sitavhether thetth smallest-scan observed in the genome is smaller
clos_e_st to the left telomere of chromosome . ‘_CENl’ indicates th_e a_ppro>_<imatethan expected by chance alone. Figm-@_nd b shows the results
position of the centromere. Because there is a total of 292 binding sites ORyf r-scan analysis for MBF and SBF respectively. Both MBF and

chromosome |, not all positions can be shown individually. ZFéees shows L . .
a measure of the probabil®yof finding a group of sites spaced at the observed SBF show a clustered distribution, albeit for differemélues. A

or a smaller distance under the assumption of the null-hypothesis. MordMore fine grained analysis is encouraged by these findings.
precisely, the plotted values are (PY50 Because of this transformation,
(i) peaks on the plot correspond to highly significant clusters, and (ji) all but the
most significant values will be effectively zero) The same plot, but projected

onto thex—z plane. The abscissa indicates the position along the chromosom ; :
from left telomere (position 1) to right telomere (position 230209). The ordinate%S an example of the results obtained with the method, qure

shows theP-values of clusters. Notice that there are three clusters with SNOWS @ significance profile of all binding site clusters of
P < 0.001, which are discussed in greater detail in the text. chromosome | of.cerevisiadsee Fig2 legend). Peaks of the
plot correspond to highly significant clusters, clusters that are
very unlikely to have occurred by chance alone. Three clusters
distribution parametek was estimated via equatiofisand2.  significant afP < 0.001 are evident. They are located at positions
Results are consistent with a Poisson distribution in random DN29760, 188430 and 198837 (not shown in Figure), counted from
(Table 1). One mismatch to the SBF binding site was allowedhe left telomere of chromosome |, and are labelled
because the genes known to be regulated by SBF, such as HO, héMeO63C/GDH3, X and X, respectively. Despite their high
several such near-matches to the SBF consensus in their prometgnificance, two of these clusters (labelled X) have to be
region @9). ForS.cerevisiagienomic DNA, it would seem likely eliminated from further consideration. The cluster starting at
that site distribution would deviate from a Poisson, due tposition 188430 shows a large overlap with the open reading
compositional heterogeneity. Perhaps surprisingly, only the SBFFame YAR033W. Although it would be possible to include such
consensus site shows a deviation from the Poisson distributichusters under the assumption that some putative ORFs will turn
(Table 1). However, a goodness of fit test to an exponentiabut to be non-coding regions1), the conservative approach of
distribution provides only a very crude assessment of distributiazonsidering only clusters located in bona-fide non-coding regions
properties. This is because (i) a large amount of distandgtaken here. The second cluster, starting at position 198837, is
information (see the site counts in Talbjds pooled into a small eliminated because it occurs downstream of both neighboring
number of bins, and (i) no site distances other than those amo@gRFs, OSH1 and YAR047C (not shown). The remaining cluster
nearest neighbors are included in the test. With these testsatgposition 29760 occurs in therion-coding region of the ORF
clumped distribution of binding sites, which may indicate therALO63C, encoded on the bottom strand, and the gene GDH3,
existence of biologically relevant clusters, could only be detecteehcoded on the top strand. A detail of this region is shown in

Genome walk
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Figure3. The figure shows a tightly packed group of four SBFchromosomes. It shows all clusters of SBF binding sites significant

binding sites spanning 144 bp, significarPat7.55x 104. The  atP < 0.001 that are also candidates for the regulation of some ORF.

figure also shows the significance values for all sub-groups dhere is experimental evidence that two of the genes are regulated

binding sites, none of which is below the thresholg 6f0.001. by SBF @9). Clusters in the 'Sregions of two divergently

This 4-cluster of binding sites makes both GDH3 and YAL063@ranscribed genes might be involved in the regulation of one or both

candidate genes for regulation by SBF. of the genes (e.g., the first pair in the table, GDH3/YALO63C, also
Table2 summarizes the results of an analogous analysis for all Bown in Figures)

Table 2.Candidate genes for regulation by SBF

Chr.  ORF Cluster statistics Estimated significance Gene structure/functién
Sites/bg Positior? Global Mono Di
1 YAL063C -1791 unknown
4/144 7.55¢ 104 5.37x104 2.9x103
GDH3 -1677 possibly NADP-linked glutamate dehydrogenase
YBR162c -3 unknown
7/551 8.31x 105 2.31x10°5 2.43x 103
2 YSY6 -115 component of secretory pathway
Hod 10/619 242 146 107 2.32x108 510x107  mating type switch
4 UMEG6 —269 TF involved in meiosis and nitrogen repression
3/28 317104 1.36x104 5.78x 104
MSS4 -413 required for cell growth
7 PDE1 4/113 -110 3.5810% 1.68x10% 2.39x10%  3'5-cyclic-nucleotide-phosphodiesterase
7 SNG1 -344 involved in nitrosoguanidine resistance
4/114 3.68< 104  1.45x10%4 6.82x 104
YGR198W -103 unknown
YGRO033C -187 unknown
6/252 1.84¢< 105 5.68x106 592x 105
7 YGRO0O34W -531 unknown
YIL169C -1043 unknown
5/253 3.05¢ 104 1.93x10%4 532x10%4
9 SDL1 -1638 L-serine dehydratase
12 YLR179C -240 unknown
5/308 6.49%< 104 2.48x10%4  6.46x 1073
12 SAM1 -4 S-adenosylmethionine synthetase
12 YLR308W  6/323 -544 6.18 105  4.45x105 510x105  unknown
12 MID2 5/202 -651 1.26 104 4.32x105  3.72x10%  required for mating
14 YNRO51C 8/718 -114 440105 1.34x105 3.24x10%4  unknown
15 YOL157C -380 unknown
4/144 7.55¢< 104 3.23x 104 1.30x 103
15 HXT11 -463 high-affinity hexose transporter
15 YOL104C -6314 unknown
6/227 1.10x 105 8.10x 106 9.60x 105
15 ITR2 -3 myo-inositol transporter
15 YOL007C 4/138 -259 6.68104 2.94x10% 9.90x10%  unknown
16 CLNA —531 G cyclin
6/536 6.50¢ 104  2.59x 104  1.34x 1072
16 BBP1 -52 deletion mutants defective in cell division

aNumber of binding sites in the cluster/length of cluster in base pairs. Only one value is given for two genes if thegaipesrsioter region, i.e., if they are divergently
transcribed.

bDistance of the 'amost site in the cluster from the start codon.

CFrom theS.cerevisiagienome database (http://genome-www.stanford.edu/Saccharomyces); see also references in the text.

dGene is known to be regulated by SBF.

€A significant sub-cluster with a highBrvalue exists which ends at position —56.

fNo significant sub-cluster exists whosenfost site lies upstream of —9.

9A significant sub-cluster with a highBrvalue exists which ends at position —21.
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The clusters listed in the table were identified on the basis of thaite occurrence in non-coding regions? The predicted probabilities
P-values (given in column 5), which are calculated from genomiof site occurrence (Tabld) based on the base composition in
binding site counts. Loc&-values (columns 6 and 7 of Tallle  non-coding and coding regions do not support this possibility.
based on local mono- and dinucleotide composition in thBredicted site probabilities either differ by <2% for non-coding and
respective promoter region are included here to account fooding regions, or even suggest that SBF binding sites should occur
compositional heterogeneity in genomic DN#2) Any cluster more frequently in coding regions, in stark contrast to the
with a localP-value vastly higher than the glolBalalue indicates  observation. It is tempting to speculate that this biased distribution
that local base-composition may have favored occurrence of thas to do with transcriptional regulation. For example, it might be
cluster. To avoid assigning a cut-off point to significance, all locahe result of (i) positive selection for clusters in non-coding regions
P-values are listed. However, any cluster that shows dHaedlle  where they can play a role in regulating gene expression, or (i)
vastly higher than its glob#&-value should only be considered negative selection eliminating clusters in coding regions, because
further if other evidence argues for its biological relevance. the binding of several copies of a transcription factor inside an ORF

Twenty six ORFs emerge as candidates for further investigatiomay interfere with transcription. If this is true, the distribution of
based on globd-values <0.001. Fourteen of these are genes witkite clusters among coding/non-coding regions might aid in
known function, two of which, HO and CLN2, are known to beassessing whether the binding site of a DNA-binding protein with
regulated by SBF20). Indeed, the regulatory region of HO unknown function has a role in transcriptional regulation.
contains the cluster of SBF binding sites with the highest
significance of allP = 2.32x 1078, Two other genes known to be Table 3.Binding sites belonging to significant clusters occur preferably in
regulated by SBF, CLN1 and HCS26, were not detected by thi®n-coding regions
analysis, because the significance of the respective binding site

clusters is well above = 0.001 (not shown). This illustrates the Site Total Coding Non-Coding X2 (1 df)
price paid for trying to minimize the false positive rate, i.e., a high Obs. EXp. Obs. Exp.
false negative rate of not detecting genes regulated by a TF. Givelge 261 231 3319 530 1291 10953

only four genes known to be regulated by SBF, a statistically

reliable estimate of this rate is clearly impossible, but it may welMBF 114 37 821 m 319 8854
be of the order of 50% or higher. Of the 24 ORFs that are not knowbHLH 76 31 54.7 45 21.3 36.64
to be regulated by SBF, some are suspicious based on features\gfr 195 114 1404 81 546  17.73

the site clusters. The cluster associated with the gene pair

YBR162C/YSY6 has a suspiciously high locBlvalue of  Expected values in non-coding and coding regions are based on the fact that 72% of

2.43x 1073 and its 3most site lies only 3 bp upstream of the startheS.cerevisagenome encodes for proteins. y values significant & < 0.001.

codon of YSY6. Such a site would lie downstream of the

TATA'bOX (9)3 and would thus probably be irrelevant to tr"’_msC”pTable 4.Estimated probabiliti€sof binding site occurrence in coding and

tional regulation. YLR179C/SAM1 and YOL104C/ITR2 might benon-coding regions o.cerevisiae

excluded on similar grounds. Nine of the remaining 18 strong

candidate ORFs are functional genes, and biological criteria can Tage Non-coding Coding

applied to identify good candidate genes for further investigation Mono Di Mono Di

among them. For example, four of these nine ORFs, UME6

MSS4Q,] MID2, and BBPl,pare thought to have a function in the BF 9.88x 104 1.11x10° 9.73x 104 1.22x10°3

cell-cycle, although not necessarily in Bg/S-transition (Table  MBF 1.13x10% 7.46x10° 1.31x10% 5.78x10°

2). No such criteria can be applied to ORFs of unknown functionpyiH 1.13x 104 1.01x 104 1.31x 104 9.87x 105

and one can only considBrvalues as rough guides to identify

promising candidates for further investigation (e.g.,

YGRO33C/YGRO34W with a 6-cluster Bf< 5.92x 10_5)' 8Estimates are based on 1000 randomly chosen 1 kb DNA segments from cod-
ing or non-coding regions, i.e., on 1 Mb of genomic DNA.

NBF 5.39x 104 6.34x 104 4.80%x 104 6.19x 104

Evidence supporting biological relevance of significant

clusters The second piece of evidence concerns the distribution of
N ] ] observed mismatches to the consensus. If one considers SBF

In addition to (i) the detection of genes known to be regulated yjnging sites in the regulatory regions of the four genes known to

SBF, and (ii) the detection of genes with a likely role in the celhe requlated by SBF, it appears that some positions are more

cycle, two pieces of evidence suggest that this type of statisticalriable than others2f). A statistically sound argument is

analysis yields biologically meaningful results. First, consider afijficult to make, partly because the number of binding sites is

clusters of binding sites significanta 0.001, including clusters  gmga)| 9). If the sites observed in the clusters shown in Table

known to be overlapping with, or contained in ORFs. If thgyere jrrelevant to SBF-binding and transcriptional regulation,

individual sites belonglng to such c_:Iusters_ were randomly distribsne would expect the mismatches to the consensus to be evenly

uted among coding and non-coding regions, one would expegktributed across the sites. This is not what is observed. The listed

[072% of the individual sites to occur in coding regions, becausgsters consist of 70 individual sites, 69 of which show one

coding regions account fdi72% of the yeast genom&3.  mismatch to the consensusFACGAAAA-3'. The number of

However, SBF binding sites belonging to significant clusters occWites with mismatches at each position is

with vastly higher frequency in non-coding regions (Tablg2

=109.53P << 103). Could this simply be due to differences in CACGAAAA

the base composition of coding and non-coding regions that favor 1810188 3435



Table 5.Candidate genes for regulation by MBF
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Chr.  ORF Cluster statistics Estimated significance Gene structure/functién
Sites/b@ Positior? Global Mono Di
1 RFA1d -130 replication factor A, 69 kDa subunit
2/36 1.72x 1073 3.83x 1073 5.54x 1073
1 YARO08W -186 unknown
2 POL12 2/29 -194 1.3% 1073 2.30x 103 1.94x 103 DNA polymerase I3 subunit
3 YCLO60C 2/35 -838 1.68 1073 3.05x 1073 2.01x 1073 unknown
3 YCRO064C —487 unknown
2/54 2.75¢ 1073 5.10x 103 1.01x 102
3 HCM1 -269 isolated as suppressor of a calmodulin
(CMD1) mutant
4 YDL018C =122 unknown
2/44 2.18x 1073 4.59% 1073 3.00x 103
4 CDC7 -539 protein kinase required for initiation of mit.
DNA synthesis
4 MCD1 2/86 —292 4.5% 1073 5.99x 10-3 8.13x 1073 mitotic chromosome determinant; similar to
Schizosaccharomyces ponfdaD21
4 YDR097C 2/26 -171 1.1510°3 2.2x 1073 3.42x 104 unknown
4 YDR134C 2/54 -344 2.7510°3 9.35x 103 1.15x 103 unknown
5 RNRH 4/192 —-306 2.0kx 1077 1.37x 106 1.64x 106 ribonucleotide reductase regulatory subunit 1
5 PUP3 -433 putative proteasome subunit
2/47 2.35x 1073 6.91x 103 5.99x 10-3
RAD51d -160 recombinational DNA repair
CLB#& -372 cyclin
2/32 1.49x 10°3 3.26x 103  4.80x 1073
7 YGR110W -6810 unknown
9 YIL026C 2/13 -123 4.0%x 104 9.98x 104 1.65% 103 unknown
10 NCA3 -1197 mutation affects mitochondrial ATP synthase
2/42 2.06x 1073 4.13x 1073 3.80% 103
10 ASF1 -180 causes expression of silent loci when
overexpressed
10 YJR030C 2/16 -216 5.7810°3 9.16x 104 1.40x% 103 unknown
11 RAD27 -123 exonuclease required for processing of
Okazaki fragments
2/58 2.98x 1073 6.04x 103 8.97x 1073
11 ABFI -520 transcription factor and ARS binding protein
12 CDC45 -145 DNA replication initiation protein
2/36 1.72x 1073 2.73x 1073 5.28x 1073
12 YLR104W -469 unknown
12 FKS1 2/60 -583 3.0810°3 7.20x 103 1.15x 102 1,3$-p-glucan synthase
14 YNL313C -145 unknown
2/18 6.88x 104 1.14x 1073 9.27x 104
14 RFAX -108 replication factor A, 32 kDa subunit
14 YNL274C -558 unknown
2/25 1.09x 10°3 3.26x 1073 2.99x 10°3
14 YNL273W -136 unknown
14 POLT 2/41 -173 2.00x 1073 2.26x103  3.13x 1073 DNA polymerase |
15 YOLO018C -271 unknown
2/19 7.45x 1074 1.08x 103 9.34x 104
15 YOLO17W -171 unknown
15 cbpczd -116 thymidilate synthase
2/43 2.12x 1073 4.05% 103 2.12x 1073
15 UFE1 -470 null-mutant defective in spore germination

and veg. growth

Table continued
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Table 5.continued

Chr.  ORF Cluster statistics Estimated significance Gene structure/functién
Sites/bg Positior? Global Mono Di

16 SPKM -254 S-phase specific kinase
2/31 1.43x 1073 2.47x 1073 2.35x 1073

16 YPL152W -557 unknown

16 DSSs4 -327 GDP dissociation factor for Sec4p
2/16 5.73x 104 1.32x 104 1.21x 103

16 RLF2 -222 involved in DNA-replication-linked

nucleosome assembly
16 YPRO75C 2/29 -159 1.32x 103 3.37x 1073 2.20x 1073 unknown

aNumber of binding sites in the cluster/length of cluster in base pairs. Only one value is given for two genes if thesgepesrabger region, i.e., if they are divergently
transcribed.

bDistance of the ‘amost site in the cluster from the start codon.

CFrom theS.cerevisiagenome database (http://genome-www.stanford.edu/Saccharomyces); see also references in the text.

dGene is known to be regulated by MBF.

This highly significant deviation from the expected uniformbetween distinct transcription factors and different binding sites
distribution [x2 = 31.99(%f), P < 0.001] further suggests that the does not always exisB§,37). Where this is the case, one may
clusters in Tabl@ are not only statistically significant, but also only be able to analyze binding sites common to a group of factors
biologically relevant. Moreover, for most of the positions, thq13), but the genome walk approach may still be useful in
pattern of mismatches is similar to that for the sites in the fouldentifying genes regulated by one or more factors in such a
genes known.to be r_egylatec_i by _SB_B)( _ group.

The analysis of binding site distribution for MBF proceeds’ pNA binding proteins belonging to the basic helix-loop—helix
analogously. MBF binding sites show a clumped distribution iy ) family of transcription factors3g) bind the core motif
the genome (Fidl). Sites belonging to significant clusters occurs cANNTG-3. In budding yeast, at least six genes encoding
preferentially in non-coding regions (TaBlean observationthat e pners of this family exist. PHO4, a transcriptional regulator
cannot be explained by differences in base composition @gble g genes needed for phosphate utiliz’atBﬁ),(CBFl, necessary

Table 5 shows 39 genes identified through the genome wal P L
analysis. Because of the small number of MBF binding sites in tg' centromere binding and methionine prototropg),(INO2

enome (Tabld), a somewhat higher significance levelFof ahd INQA" which fom_" a t_ranscrlptl_onal regulator of the
8.005 Wa(s use()j here. Becausegof thisgsmall number of sitest§ression of phospholl_pld biosynthetic genes42), SGC1,
group of only two closely spaced sites can be significant. In fad€duired for the expression of the yeast enolase géfps0d
all candidate genes except RNR1 (which is known to be regulatfd 1, @ protein involved in the communication between nucleus,
by MBF; 30) have only two binding sites in their non-coding Mitochondria and peroxisomeg4|. A sub-group of bHLH
region. Significance estimates based on mono- and dinucleotiBoteins binds the palindromic motift6ACGTG-3, and CBFI
distributions are to be taken with caution here, because glottd PHO4 are members of this sub-group in budding y&gst (
genome composition considerably overestimates the probabilfO2/INO4 seem to bind DNA with a slightly different
of site occurrence (not shown). If this holds for local compositiogpecificity ¢6,47), and the binding activities of both SGC1 and
as well, then the values shown in column 6 and 7 of Falié ~ RTGL1 are not well characterized. Because the bHLH core binding
considerably underestimate cluster significance. For nine of thmotif is too short to be analyzed with the method used here, a
39 identified candidate genes, regulation by MBF has alreadyearch for groups of thé-EACGTG-3 motif was carried out.
been shown or proposezi(30). Of the remaining 30 candidates, Genes whose promoters contain such groups are candidates for
17 are ORFs of unknown function. Among the 13 genes withegulation by all characterized bHLH proteins except
known function are some good candidates for regulation by MBno2p/Ino4p, plus potentially unknown bHLH factors. As in the
based on their role in the cell-cycle, and based on the fact thiove cases, the bHLH motif shows a clumped distribution (Fig.
MBF is known to regulate the expression of genes involved i) and a strong bias for cluster occurrence in non-coding regions
DNA replication. One example is RLF2, involved inthe asse_mblhamesg and4). Table6 shows genes associated with highly
of nucleosomes on replicating DN&4). Another example is  gignificant clusters. There are between 8 and 15 candidate genes,
RAD27 (RTH1), a 5-3 exonuclease required for the processingjenending on whether one or both members of the gene pairs in
of Okazaki fragments during replicatid#bj. Notably, 28 out of promoter—promoter orientation are counted. The most significant

:PaensacgribC::jngliegﬁge%ﬁ;%Sn i;eporgﬁéngt?; d(;f gene pairs that Qlfster P =2.9x 107%) is associated with two ORFs of unknown

' function. Notably, three of the nine candidate genes with known
function, ATP7, NDI1 and IDH1, encode mitochondrial proteins
involved in energy metabolism. It is tempting to speculate that
Families of transcription factors with widely overlapping bindingRTG1 may be involved in their regulation, given that it may have
specificities are common in eukaryotes, and a one-to-one relatiamole in regulating mitochondrial metabolisfd)

Families of DNA binding activities
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Table 6.Candidate genes for regulation ByBACGTG-3 bHLH transcription factors

Chr. ORF Cluster statistics Estimated significance Gene structure/functién
Sites/bg Positior? Global Mono Di

4 CDC34 -348 ubiquitin conjugating enzyme E2
3/313 2.89%x 104 8.48x 104 3.32x 104

4 YDRO55W -545 unknown

Swi4 -1121 transcription factor

2/13 553104 557x10%4 5.86x 104

5 Uss1 -228 U6 snRNA-associated protein

LPD1 -263 dihydrolipoamide dehydrogenase precursor

2/17 8.68x 104 1.10x 103 1.71x 103

6 SNP2 —298 snRNP E protein

8 YHR136C -26 unknown
4/336 2.8% 106  1.79x10°5  4.86x 105

8 YHR137W —253 unknown

10 YJLo12C 2/18 -108 9.47 104 1.46%x 103 1.29x 103 unknown

11 ATP7 -262 ATP synthase subunit d
3/35 2.62x106 433x10% 8.83x10°6

11 PUT3 -264 transcriptional activator of proline utilization genes

13 NDI1 -553 mitochondrial NADH ubiquinone 6 oxidoreductase
2117 8.68x 104  1.15x 103  1.00x 1073

13 YML119W —240 unknown

14 IDH1 -392 SU of mitochondrial isocitrate dehydrogenase 1
3/89 2.14x 105 8.31x10° 1.78x10%

14 NCE3 -337 involved in protein secretion

aNumber of binding sites in the cluster/length of cluster in base pairs.
bDistance of the '3most site in the cluster from the start codon.
CFrom theS.cerevisiagenome database (http://genome-www.stanford.edu/Saccharomyces); see also references in the text.

Homotypic cooperativity of DNA binding activities that of the three binding sites just discussed. First, NBF binding
with unknown function sites do not show a clumped distribution (Bid). Second, while

) S _still significant, the distribution among coding and non-coding
The example used here is NBF, an activity binding to four siteggions of sites inside clusters (TaBJeshows a much less biased
in the promoter of the INO1 gene which is involved in thepattern than that of the other sites. Whereas thegafibinding
biosynthesis of membrane phospholipiti§(The products of at sites in non-coding regions to those in coding regions is at least one
least three genes, OPI1, INO2 and INO4, contribute to thgr these sites (calculated from TaBles = 0.71 for NBF. The
transcriptional regulation of INO1{,48). NBF appears to be mononucleotide distribution of non-coding regions might account
distinct from their productsi@,46). NBF binds specifically to & for a part of the remaining bias (Table Third, despite the large
sequence with consensuSAFGTGAAAT-3', which is very  number of NBF binding sites, only three significant clusters (not
similar to an octamer motif, ’RTGCAAAT-3', known to be  shown) occur that lie entirely in thérfon-coding regions of some
involved in the transcriptional regulation of immunoglobulinORF. Contrast this with the 15 candidate genes for regulation by
genes §6). Although promoter fragments that confer INO1pH| H proteins, despite the fact that their total number of binding
specific regulation contain at least one NBF binding site, an NB§jtes s almost 6-fold lower. Thus, NBF binding sites show a pattern
site alone in front of a heterologous reporter gene cannot activajesite and cluster distribution vastly different from that of the
transcription 41). Thus, NBF may not be part of a transcriptionakranscriptional regulators analyzed thus far. If NBF is a transcrip-
regulator, or base pairs flanking its binding site may be necessagynal regulator at all, homotypic cooperative interactions are not

for full UAS function ¢6,49). _ a dominant mode of action for NBF.
5509 sites with at most one mismatch to the NBF consensus

occur in the genome & .cerevisia¢Tablel). Sites with a larger  ~oNCLUSION AND OUTLOOK

number of mismatches are too frequent, and would not allow a

meaningful analysis. When analyzing the distribution of thes&he transcription factors studied here illustrate that despite a large
5509 sites, a pattern emerges that is fundamentally different fronumber of transcription factor binding sites in a genome, the
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number of significant clusters of sites can be very small. Sudi®
clusters also show unexpected features, such as their prefer

occurrence in non-coding regions. These features and the fact that

Fickett, J.W. (1996Yl0l. Cell. Biol, 16, 437—441.

d'us Nomenclature Committee (1985)r. J. Biochem150, 1-5.

Kendall, M.G. (1952Fhe Advanced Theory of Statistics. VolQtiffin,
London. p. 22.

the method presented here detects genes whose regulation By @hawale, S.S. and Lane, A.C. (198&icleic Acids Res24, 5537-5546.

given transcription factor was shown experimentally, indicate its7
usefulness. However, the critical question regarding the false
positive rate of the method can only be decided by experimenta

testing its predictions. This may be a challenging task, especially

Karlin, S. and Taylor, H.. (1973) First Course in Stochastic Processes.
Academic Press, New York.

Abramowitz, M. and Stegun, I.A. (1972andbook of Mathematical
Functions 26.1.28, 26.1.31. Dover, New York.

Turkel, S. and Farabaugh, P.J. (199@8). Cell. Biol, 13, 2091-2103.

because presence or absence of a transcription factor alone rm@yKarlin, S. and Macken, C. (199)cleic Acids Resl9, 4241-4246.

not be sufficient for regulation of a target gene. The availabilitgl
of necessary cofactors may critically depend on the environme%
or on the physiological state of a cell. 23
Many further applications of the method are conceivable, othey,
than analyzing all characterized transcription factor binding sites
in yeast. For example, the usefulness of the method can #e
considerably enhanced by not only considering homotypit
cooperativity, but also heterotypic interactions at a promoter. Thag
is, consider not only clusters of binding sites for one transcription
factor, but also clusters of binding sites for different transcriptio@®
factors. This extension of the method would require only a slig
modification to the statistical approach. The method can also

Parzen, G. (196&tochastic Processedolden-Day, San Francisco. Ch.
4.2,

Karlin, S. and Macken, C. (1991)Am. Stat. Assq@6, 27-35.

Dembo, A. and Karlin, S. (1992nn. Appl. Proh.2, 329-357.

Sokal, R.R. and Rohlf, F.J. (19&ipmetry Freeman, New York.

Koch, C. and Nasmyth, K. (1992)rr. Opin. Cell Biol, 6, 451-459.
Nasmith, K. and Dirick, L. (1993ell, 66, 995-1013.

7 Lowndes, N.F., Johnson, A.L. and Johnston, L.H. (18@tyre 350

247-250.

Verma, R., Patapoutian, A., Gordon, C.B. and Campbell, J.L. (P984)
Natl. Acad. Sci. USA8, 7155-7159.

Ogas, J., Andrews, B.J. and Herskowitz, |. (1954l) 66,1015-1026.
Mclintosh, E.M. (1993Furr. Genet.24, 185-192.

Goffeau, A., Barrell, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann,
H., Galibert, F., Hoheisel, J.D., Jacq, C., JohnstorgtMLl. (1996)

applied to higher eukaryotes, where genomic sequences are NOWscience274 546-567.

rapidly accumulating. Such an application will raise news2
challenges because of (i) the vastly larger genomes involved,

the abundance of tandem repeats, (iii) the existence of regulat

regions interspersed between genes, and (iv) the often ill-definggl
location of coding regions. In these cases, existing complemen-
tary techniques5(0-52), e.g., technigues suitable to determine the36
location of likely promoter regions, will have to be used in

conjunction with the method introduced here. g;
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